Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có \(A\left(0;2\right);B\left(-2;2\right);C\left(4;-2\right)\). Gọi H là chân đường cao kẻ từ B, M và N lần lượt là trung điểm của các cạnh AB và BC. Viết phương trình đường tròn đi qua các điểm H, M, N
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \(\left(x-1\right)^2+\left(y-2\right)^2=4\) và đường thẳng \(d:a-y-1=0\). Viết phương trình đường tròn (C') đối xứng với đường tròn (C) qua đường thẳng d. Tìm tọa độ các giao điểm của (C) và (C') ?
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có tâm \(I\left(\dfrac{1}{2};0\right)\) phương trình đường thẳng AB là : \(x-2y+2=0\) và AB = 2AD. Tìm tọa độ các đỉnh A, B, C, D biết đỉnh A có hoành độ âm ?
Trong mặt phẳng tọa độ Oxy, hãy xác định tọa độ đỉnh C của tam giác ABC biết rằng hình chiếu vuông góc của C trên đường thẳng AB là điểm \(H\left(-1;-1\right)\), đường phân giác trong góc A có phương trình \(x-y+2=0\) và đường cao kẻ từ B có phương trình \(4x+3y-1=0\)
Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang ABCD với hai đáy AB, CD và CD=2AB. Gọi H là chân đường vuông góc hạ từ D xuống AC và M là trung điểm của HC. Biết tọa độ đỉnh B(5;6), phương trình đường thẳng DH: 2x-y=0, phương trình đường thẳng DM: x-3y+5=0. Tìm tọa độ các đỉnh của hình thang ABCD.
Trong mặt phẳng tọa độ Oxy cho hai điểm \(A\left(2;0\right);B\left(6;4\right)\). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại điểm A và khoảng cách từ tâm của (C) đến điểm B bằng 5
Trong một mặt phẳng Oxy cho điểm M(6;0) và đường thẳng \(\left(\Delta\right)\) : x+2y-9=0
a,Tính khoảng cách từ M đến \(\left(\Delta\right)\)
b, Viết phương trình đường tròn tâm M và tiếp xúc với \(\left(\Delta\right)\)
Trong mặt phẳng tọa độ Oxy cho điểm \(M\left(2;1\right)\) :
a) Lập phương trình đường tròn (C) tiếp xúc với đường thẳng \(d:x-y-1=0\) tại điểm \(M\left(2;1\right)\) và có tâm nằm trên đường thẳng \(d':x-2y-6=0\)
b) Lập phương trình tiếp tuyến với (C) biết rằng tiếp tuyền này vuông góc với đường thẳng \(m:x-y+3=0\)
Trong mặt phẳng tọa đọ Oxy cho điểm \(M\left(2;\dfrac{3}{2}\right)\)
a) Viết phương trình đường tròn (C) có đường kính OM
b) Viết phương trình đường thẳng d đi qua M và cắt hai nửa trục dương Ox, Oy lần lượt tại A, B sao cho diện tích tam giác OAB bằng 6 đơn vị diện tích
c) Tìm tọa độ tâm I của đường tròn nội tiếp (T) của tam giác OAB. Viết phương trình đường tròn đó