Bài 4: Phép đối xứng tâm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Trong mặt phẳng tọa độ Oxy cho điểm \(A\left(-1;3\right)\) và đường thẳng d có phương trình \(x-2y+3=0\). Tìm ảnh của A và d qua phép đối xứng tâm O ?

qwerty
31 tháng 3 2017 lúc 7:55

Dễ thấy A' = {D_{o}}^{}(A) = (1;-3)

Để tìm ảnh của đường thẳng d ta có thể dùng các cách sau:

Cách 1:

Đường thẳng d đi qua B(-3;0) và C (-1;1). Do đó ảnh của d qua phép đối xứng tâm O là đường thẳng d' đi qua B' = \(D_O\) (B) = (3;0) và C' = \(D_O\) (C) = (1;-1). suy ra phương trình của d' là: \(\dfrac{x-3}{1-3}=\dfrac{y}{-1}\) hay x - 2y - 3 = 0

Cách 2:

Đường thẳng d đi qua B(-3;0), d' là ảnh của d qua phép đối xứng tâm O nên nó song song với d. Do đó d' có phương trình x- 2y +C =0, nó đi qua B' =( 3;0) là ảnh của B qua phép đối xứng tâm O/ Do đó 3+C=0. Từ đó suy ra C = -3

Vậy ảnh của d qua phép đối xứng tâm O là đường thẳng d' có phương trình x-2y-3=0

Trần Đăng Nhất
31 tháng 3 2017 lúc 8:39

Dễ thấy A' = \({D_{o}}^{}(A) = (1;-3)\)

Để tìm ảnh của đường thẳng d ta có thể dùng các cách sau:

Cách 1:

Đường thẳng d đi qua B(-3;0) và C (-1;1). Do đó ảnh của d qua phép đối xứng tâm O là đường thẳng d' đi qua B' = DODO (B) = (3;0) và C' = DODO (C) = (1;-1). suy ra phương trình của d' là: x−31−3=y−1x−31−3=y−1 hay x - 2y - 3 = 0

Cách 2:

Đường thẳng d đi qua B(-3;0), d' là ảnh của d qua phép đối xứng tâm O nên nó song song với d. Do đó d' có phương trình x- 2y +C =0, nó đi qua B' =( 3;0) là ảnh của B qua phép đối xứng tâm O/ Do đó 3+C=0. Từ đó suy ra C = -3

Vậy ảnh của d qua phép đối xứng tâm O là đường thẳng d' có phương trình x-2y-3=0


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Puca Trần
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
chíp chíp
Xem chi tiết
Gia Bảo
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết