Trong mặt phẳng Oxy cho ba đường tròn :
\(\left(C_1\right):\left(x-1\right)^2+\left(y-3\right)^2=4\)
\(\left(C_2\right):\left(x+3\right)^2+\left(y-4\right)^2=4\)
\(\left(C_3\right):\left(x+1\right)^2+\left(y-5\right)^2=5\)
Trong hai đường tròn \(\left(C_2\right)\) và \(\left(C_3\right)\), đường tròn là ảnh của \(\left(C_1\right)\) qua phép tịnh tiến. Xác định phép tịnh tiến này ?
Trong mặt phẳng Oxy cho đường tròn \(\left(C\right):x^2+y^2+2x-4y-11=0\). Tìm phép tịnh tiến biến (C) thành \(\left(C'\right):\left(x-10\right)^2+\left(y+5\right)^2=16\)
Trong mặt phẳng Oxy, cho đường tròn \(\left(C\right):\left(x-1\right)^2+\left(y-2\right)^2=9\). Viết phương trình đường tròn ảnh của đường tròn đã cho qua phép quay \(Q_{\left(O,-90^0\right)}\) với O là gốc tọa độ ?
Trong mặt phẳng Oxy cho đường tròn \(\left(x-1\right)^2+\left(y-2\right)^2=9\). Viết phương trình đường tròn ảnh của đường tròn đã cho qua phép dời hình có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow{v}=\left(2;0\right)\) và phép vị tự tâm O tỉ số \(k=-3\)
Trong mặt phẳng Oxy cho đường tròn \(\left(C\right):\left(x-1\right)^2+\left(y-2\right)^2=9\), viết phương trình đường tròn ảnh của đường tròn đã cho qua phé đối xứng trục \(d:x=1\)
Trong mặt phẳng Oxy cho đường tròn \(\left(x-1\right)^2+\left(y-2\right)^2=16\). Viết phương trình đường tròn ảnh của đường tròn đã cho qua phép quay tâm O và gốc tọa độ với góc quay \(90^0\) ?
Trong mặt phẳng Oxy xét phép biến hình F biến mỗi điểm \(M\left(x;y\right)\) thành \(M'\left(2x-1;-2y+3\right)\). Chứng minh F là một phép đồng dạng ?
Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm \(I\left(1;-3\right)\), bán kính 2. Viết phương trình ảnh của đường tròn \(\left(I;2\right)\) qua phép đồng dạng có được từ việc thực hiện liên tiếp phép vị tự tâm O tỉ số 3 và phép đối xứng qua trục Ox ?
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trực tâm O . Gọi M là trung điểm của BC; N,P lần lượt là chân đường cao kẻ từ B và C . Đường tròn đi qua 3 điểm M,N,P có phương trình : (T) : \(\left(x-1\right)^{^{ }2}+\left(y+\dfrac{1}{2}\right)^2=\dfrac{25}{4}\) . Phương trình đường tròn ngoại tiếp tam giác ABC là