M thuộc trục hoành Ox nên \(M\left(x;0\right)\).
\(\overrightarrow{MA}\left(5-x;5\right);\overrightarrow{MB}\left(3-x;-2\right)\)
\(\overrightarrow{MA}+\overrightarrow{MB}=\left(8-x;3\right)\)
Ta có:
\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\sqrt{\left(8-x\right)^2+3^2}\ge\sqrt{3^2}=3\).
Vậy giá trị nhỏ nhất của \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) bằng 3 khi x = 8 hay \(M\left(8;0\right)\).