Trong mặt phẳng cho 18 điểm trong đó không có 3 điểm nào thẳng hàng. Chứng minh rằng: tồn tại có 3 điểm trong 5 điểm đã cho là 3 đỉnh của 1 tam giá có 1 góc: ≤ 10o
Trong mặt phẳng tọa độ Oxy cho parabol \(\left(P\right):y=-x^2\) và đường thẳng (d) đi qua điểm I(0;-1) và có hệ số góc k.
a) Gọi hoành độ của A; B lần lượt là x1, x2. Chứng minh: \(\left|x_1-x_2\right|\ge2\)
b) Chứng minh: Tam giác OAB vuông
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\)và đường thẳng (d): \(y=3x+m^2-1\). Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt là x1,x2. Tìm m để |x1|+2.|x2|=3
Trên mặt phẳng cho 2016 điểm. Trong đó luôn có 3 điểm không thẳng hàng.Các điểm này tô bởi 2 điểm xanh và đỏ.CMR:luôn tồn tại 1 tam giác đều có 3 điểm cùng màu.
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\) và đường thẳng (d): y=\(3x+m^2-1\). Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt là x1,x2. Tìm m để \(\left|x_1\right|+2.\left|x_2\right|=3\)
1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.
Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)
2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.
CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín
3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.
CMR tồn tại một đường tròn đi qua 3 trong 2012 điểm đã cho mà đường tròn này không chứa bất kì điểm nào trong số những điểm còn lại
4. Trên mặt phẳng cho n điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
CMR qua mỗi điểm co không quá 5 đoạn thẳng
5. Cho 7 số nguyên dương khác nhau không vượt quá 1706.
CMR tồn tại 3 số a, b, c trong chúng sao cho a<b+c<4a
mỗi điểm của mặt phẳng được tô bởi 1 trong 2 màu đỏ, đen. Chứng tỏ rằng tồn tại một tam giác đều mà các đỉnh của nó chỉ được tô bằng một màu
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Các đường thẳng BE và CF cắt đường tròn (O;R) tại Q và K. Gọi I là trung điểm BC, chứng minh I thuộc đường trong ngoại tiếp tam giác DEF
Cho tam giác ABC có AB ACGH.
1. Chứng minh BH = EC .
2. Vẽ hình bình hành 4EFH . Chứng minh rằng 4F vuông góc với BC.
3. Gọi O là giao điểm các đường trung trực của tam giác ABC, M và N lần lượt là trung điểm của
EH và BC, biết OH = OE . Chứng minh tứ giác AMON là hình bình hành và tính góc BỌC.