Bài 14. Phương trình mặt phẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M(1; −1; 5) và vuông góc với hai mặt phẳng (Q): 3x + 2y – z = 0, (R): x + y – z = 0.

datcoder
27 tháng 10 lúc 21:37

Ta có: \(\overrightarrow {{n_Q}}  = \left( {3;2; - 1} \right),\overrightarrow {{n_R}}  = \left( {1;1; - 1} \right)\)

\(\left[ {\overrightarrow {{n_Q}} ,\overrightarrow {{n_R}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 1}\\1&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&3\\{ - 1}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&2\\1&1\end{array}} \right|} \right) = \left( { - 1;2;1} \right)\)

Vì (P) vuông góc với hai mặt phẳng (Q) và (R) nên (P) nhận \(\left[ {\overrightarrow {{n_Q}} ,\overrightarrow {{n_R}} } \right] = \left( { - 1;2;1} \right)\) làm một vectơ pháp tuyến. Mà (P) là mặt phẳng đi qua điểm \(M\left( {1; - 1;5} \right)\) nên phương trình (P) là: \( - 1\left( {x - 1} \right) + 2\left( {y + 1} \right) + 1\left( {z - 5} \right) = 0 \Leftrightarrow  - x + 2y + z - 2 = 0\)