Bài 2: Phương trình mặt phẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Văn Hưng

Trong không gian hệ tọa độ Oxyz, cho các điểm A(2;0;0); C(0;4;0); D(0;0;4). Tìm tọa độ điểm B sao cho tứ giác OABC là hình chữ nhật. Viết phương trình mặt cầu (S) đi qua O, B, C, D

Nguyễn Bảo Trân
7 tháng 4 2016 lúc 16:22

Gọi B(x;y), ta có \(OA\perp OC\) nên OABC là hình chữ nhật =>\(\overrightarrow{AB}=\overrightarrow{OC}\) \(\Leftrightarrow\begin{cases}x-2=0\\y-0=4\\z-0=0\end{cases}\) \(\Rightarrow B\left(2;4;0\right)\)

Ta có \(\overrightarrow{OB}=\left(2;4;0\right);\overrightarrow{OD}=\left(0;0;4\right);\overrightarrow{CB}=\left(2;0;0\right);\overrightarrow{CD}=\left(0;-4;4\right)\)

Do đó \(\overrightarrow{OB}.\overrightarrow{OD}=0\) và \(\overrightarrow{CB}.\overrightarrow{CD}=0\Rightarrow\widehat{BOD}=\widehat{BCD}=90^0\)

Suy ra mặt cầu đi qua 4 điểm O, B, C, D có tâm I là trung điểm của BD, bán kính R=OI

Ta có \(I\left(1;2;2\right);R=OI=\sqrt{1+2^2+2^2}=3\)

Do đó mặt cầu (S) có phương trình : \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-2\right)^2=9\)

lâm cự giải
6 tháng 10 2017 lúc 11:55

b


Các câu hỏi tương tự
Nguyễn Trọng Hiếu
Xem chi tiết
Honganh Vu
Xem chi tiết
Lê Mạnh Cường
Xem chi tiết
Nguyễn Văn Toán
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Văn Phụng
Xem chi tiết
Phan trà my
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết