Phương trình nào sau đây là phương trình bậc nhất 2 ẩn A. x^2 -2y=1 B.x-2y-1=0 C.x-2y+z-1=0 D.xy-2y-1=0
20. Tìm tọa độ điểm M nằm trên trục Ox và cách đều hai đg thẳng denta 1: 3x -2y -6=0 và denta 2 : 3x -2y +3=0
Trong mặt phẳng với hệ tọa độ, cho điểm A(1,2)và đthẳng (Δ) : x -2y -2 =0
a)Viết phương trình đường tròn tâm thuộc (Δ) và tiếp xúc với hai trục tọa độ
b) Viết phương trình đường thẳng(D)đi qua A, cắt tia Ox, Oy tại M và N mà diện tích tam giác OMN đạt giá trị nhỏ nhất.
Help me!!!
Tìm các giá trị của a và b để các hệ phương trình sau có vô số nghiệm ?
a) \(\left\{{}\begin{matrix}3x+ay=5\\2x+y=b\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}ax+2y=a\\3x-4y=b+1\end{matrix}\right.\)
Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt
Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4
Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)
Câu 4: Cho tam giác ABC. Gọi D,I lần lượt là các điểm xác định bởi \(3\overrightarrow{BD}-\overrightarrow{BC}=\overrightarrow{0}\) và \(\overrightarrow{IA}+\overrightarrow{ID}=\overrightarrow{0}\). Gọi M là điểm thỏa mãn \(\overrightarrow{AM}=x\overrightarrow{AC}\) (x∈R)
a) Biểu thị \(\overrightarrow{BI}\) theo \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\)
b) Tìm x để ba điểm B,I,M thẳng hàng
Giải hệ phương trình
\(\left\{{}\begin{matrix}3\sqrt{2x+y}+\sqrt{x-2y+1}=5\\2\sqrt{x-2y+1}-5x=10y+9\end{matrix}\right.\)
Tìm điều kiện của tham số m để nghiệm của hệ phương trình
\(\hept{\begin{cases}x+2y=m-1\\2x-y=m+3\end{cases}}\)
có nghiệm duy nhất (a,b) và \(a^2+b^2\) nhỏ nhất
\(\left\{{}\begin{matrix}\sqrt{2x+y}+2\sqrt{x-2y+1}=5\\3\sqrt{x-2y+1}+y=3x+2\end{matrix}\right.\)