Trong các dãy số \(\left(u_n\right)\) sau đây, dãy số nào là cấp số cộng ?
a) \(u_n=3n-1\)
b) \(u_n=2^n+1\)
c) \(u_n=\left(n+1\right)^2-n^2\)
d) \(\left\{{}\begin{matrix}u_1=3\\u_{n+1}=1-u_n\end{matrix}\right.\)
Cho dãy số \(\left(u_n\right)\) là một cấp số cộng có \(u_1\) = 4, công sai d = -3 và \(u_n\) = -41. Tìm n?
Cho dãy số \(\left(u_n\right)\) với \(u_n=1-7n\)
a) Khảo sát tính tăng, giảm của dãy số
b) Chứng minh dãy số trên là cấp số cộng. Lập công thức truy hồi của dãy số
c) Tính tổng 100 số hạng đầu của dãy số
Chứng minh , kiểm tra 1 dãy số có là cấp số cộng hay không ? xác định U1 , d
a , \(\left\{{}\begin{matrix}u_1\\u_n+1=u_n-n\end{matrix}\right.\)
b , \(\left\{{}\begin{matrix}u_1=a\\u_n+1=5\end{matrix}\right.\) tìm a để d số là cấp số cộng
trong các dãy số (Un) sau. dãy nào là cấp số cộng
a, \(u_n=v_n-v_{n-1}\) với \(v_n=\left(2n+1\right)^2\)
b, \(u_n=\left(-1\right)^n+2n\)
c, \(\left\{{}\begin{matrix}u_n\\u_{n+1}=1-u_n\end{matrix}\right.=3\) với \(n\ge1\)
Tìm số hạng đầu \(u_1\) và công sai \(d\in Z\) của cấp số cộng \(\left(u_n\right)\) biết
a) \(\left\{{}\begin{matrix}u_6=8\\u_2^2+u_4^2=16\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}u_5=18\\4S_n=S_{2n}\end{matrix}\right.\)
Bài: tìm số hạng đầu, công sai của cấp số cộng \(\left(u_n\right)\):
a) \(\left\{{}\begin{matrix}u_2-u_3+u_5=10\\u_4+u_6=26\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}u_2-u_6+u_4=-7\\u_8-2u_7=2u_4\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}u_7-u_3=8\\u_2.u_7=75\end{matrix}\right.\)
Cho dãy số (un) : \(0;\frac{1}{2};\frac{2}{3};\frac{3}{4};\frac{4}{5};....\) Số hạng tổng quát của dãy số (un) là :
A. \(u_n=\frac{n-1}{n}\)
B. \(u_n=\frac{n}{n+1}\)
C. \(u_n=\frac{n^2-n}{n+1}\)
D. \(u_n=\frac{n+1}{n+2}\)
Cho cấp số cộng \(\left(u_n\right)\) chứng minh nếu :
\(\dfrac{S_m}{S_n}=\dfrac{m^2}{n^2}\)
thì :
\(\dfrac{u_m}{u_n}=\dfrac{2m-1}{2n-1}\)