Trl giúp t câu C với ạ
Cho ∆ABC vuông tại A (AB<AC) có đường cao AH
a) Chứng minh ∆HBA ∾ ∆ABC
b) Chứng minh AH2=HB.HC
c) Gọi E là điểm đối xứng với H qua điểm A, M là trung điểm của AH. Chứng minh: CM⊥BE tại K.
giúp mik câu d với
Cho tam giác ABC vuông tại A (AB<AC), AH đường cao ( H\(\in\)BC)
a. tam giác HBA đồng dạng tam giác ABC
b. AB=15cm, BC=25 cm. HB=?
c. BD//AC (D thuộc AH). chứng minh: HA.HB=HC.HB
d. M là trung điểm BD, N là trung điểm AC. Chứng minh M,H,N thẳng hàng
cho tam giác ABC vuông tại A (AB<AC) có AH là đường cao, AB= 3cm,, BC = 5cm
a) Chứng minh tam giác HBA đồng dạng với tam giác ABC
b) Tính BH, CH, AC
c) Trên tia đối của tia AB lấy điểm D sao co AD =AB. Gọi M là trung điểm của AH. Chứng minh HD.AC = BD.MC
d) Chứng minh MC vuống góc với DH
GIÚP MIK VỚI :(((
Bài 14: Cho∆ABC có ba góc nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a) Chứng minh: Tứ giác BHCK là hình bình hành.
b) Chứng minh: BK ⊥AB và CK ⊥AC.
c) Gọi I là điểm đối xứng của H qua BC. CMR: Tứ giác BIKC là hình thang cân.
d) BK cắt HI tại G, Tam giác ABC có thêm điều kiện gì để tứ giác GHCK là hình thang cân.
cho tam giác ABC vuông tại A (AB<AC) có đường cao AH (H thuộc BC). Lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Chứng minh tam giác ABC đồng dạng với tam giác HBA. Qua điểm C kẻ đường thẳng vuông góc với tia AD tại E. Chứng minh AH.CD=CE.AD. Chứng minh tam giác HDE đồng dạng tam giác ADC và BD.AC=2AD.HE. Tia AH cắt tia CE tại F chứng minh AF^2=2BF.AE
Cho ∆ABC vuông tại A( AB<AC) có đường cao AH.
a) Chứng minh ∆HBA~∆ABC và viết tỉ số đồng dạng.
b) Trên đoạn thẳng AH lấy điểm D. Gọi E là hình chiếu của C trên đường thẳng BD. Chứng minh BH.BC = BD.BE
c) Qua điểm D vẽ đường thẳng vuông góc với BE, trên đường thẳng này lấy điểm K, sao cho BA=BK. Chứng minh KB vuông góc KE.
Giúp mik với, mik cần gấp!
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC
a) Chứng minh rằng ΔAEF ΔACB
b) Cho AH = 4,8cm, BC = 10 cm. Tính SAEF?
c) Lấy điểm I đối xứng với H qua AB. Từ B kẻ đường vuông góc với BC cắt AI ở K. Chứng minh rằng KC, AH, EF đồng quy
Cho ΔABC vuông tại A, có đường cao AH.
a) Cho biết AB = 9cm; AC = 12cm. Tính độ dài cạnh BC.
b) Chứng minh: AH2 = HB.HC
c) Gọi P là trung điểm của BH và Q là trung điểm của AH.
Chứng minh: AP ⊥ CQ.
Bài 14: Cho △ABC có ba góc nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a) Chứng minh: Tứ giác BHCK là hình bình hành.