Đặt \(A=2.3+4.5+6.7+...+18.19\)
\(=2.\left(1.3+2.5+...+9.19\right)\)
\(=2.\left(1+2+2^2+3+3^3+4+...+9^2+10\right)\)
\(=2.\left\{\left(2+3+4+...+10\right)+\left(1^2+2^2+3^2+...+9^2\right)\right\}\)
\(=2.\left(\frac{\left(10-1\right).\left(10+2\right)}{2}+\frac{9.10.19}{6}\right)\)
Từ đó ta có được:
\(1+2.3+4.5+...+16.17+18.19+20\)
\(=678+1+20\)
\(=699\)