Ta có: \(3S=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}\)
\(\Rightarrow4S=\left(1-3+3^2-3^3+3^4-...+3^{98}-3^{99}\right)+\left(3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}\right)\)
\(\Rightarrow4S=1-3^{100}\)
\(\Rightarrow S=\frac{1-3^{100}}{4}\)
S = 1 - 3 + 32 - 33 + 34 - .... + 398 - 399
=1 -3.(1-3+32-33+34-...+398-399+399)
=1-3(1 - 3 + 32-33+34-...+398-399)-3.399
=1-3S-3100
=>S+3S=1-3100
=>4S=1-3100
=>S=(1-3100)/4