\(A=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{55}+\dfrac{1}{66}\)
\(A=2\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\right)\)
\(A=2\left(\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}+\dfrac{1}{10\cdot11}+\dfrac{1}{11\cdot12}\right)\)
\(A=2\left(\left(\dfrac{1}{4}-\dfrac{1}{5}\right)+\left(\dfrac{1}{5}-\dfrac{1}{6}\right)+\left(\dfrac{1}{6}-\dfrac{1}{7}\right)+\left(\dfrac{1}{7}-\dfrac{1}{8}\right)+\left(\dfrac{1}{8}-\dfrac{1}{9}\right)+\left(\dfrac{1}{9}-\dfrac{1}{10}\right)+\left(\dfrac{1}{10}-\dfrac{1}{11}\right)+\left(\dfrac{1}{11}-\dfrac{1}{12}\right)\right)\)
\(A=2\left(\dfrac{1}{4}-\dfrac{1}{12}\right)\Rightarrow A=\dfrac{1}{3}\)