a)\(\left(-25\right)\cdot68+\left(-34\right)\cdot\left(-250\right)\)
\(=\left(-25\right)\cdot68+\left(-34\right)\cdot\left(-2\right)\cdot125\)
\(=\left(-25\right)\cdot68+68\cdot125\)
\(=68\left[\left(-25\right)+125\right]\)
\(=68\cdot100=6800\)
b)\(B=2^{100}-2^{99}-...-2^2-2-1\)
\(B=2^{100}-\left(2^{99}+...+2^2+2+1\right)\)
Đặt \(A=2^{99}+...+2^2+2+1\)
\(2A=2\left(2^{99}+...+2^2+2+1\right)\)
\(2A=2^{100}+...+2^3+2^2+2\)
\(2A-A=\left(2^{100}+...+2^3+2^2+2\right)-\left(2^{99}+...+2^2+2+1\right)\)
\(A=2^{100}-1\). Thay A vào B ta có:
\(B=2^{100}-\left(2^{100}-1\right)=2^{100}-2^{100}+1=1\)