\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.51}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{51}{153}-\frac{3}{153}\right)\)
\(=\frac{1}{2}.\frac{48}{153}\)
\(=\frac{24}{153}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.51}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{17}{51}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)
Mk làm hơi thiếu chút nên mk sửa lại nhé:
\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{51}{153}-\frac{3}{153}\right)\)
\(=\frac{1}{2}.\frac{48}{153}\)
\(=\frac{24}{153}\)