\(\left(\sqrt{a-1}+\sqrt{b-1}\right)^2=a-1+2\sqrt{\left(a-1\right)\left(b-1\right)}+b-1=a+b-2+2\sqrt{ab-a-b+1}=...:< \)
\(\left(\sqrt{a-1}+\sqrt{b-1}\right)^2=a-1+2\sqrt{\left(a-1\right)\left(b-1\right)}+b-1=a+b-2+2\sqrt{ab-a-b+1}=...:< \)
Tính:
\(A=\sqrt{20}-10\sqrt{\dfrac{1}{5}}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(B=2\sqrt{32}+5\sqrt{8}-4\sqrt{32}\)
\(C=\sqrt{\left(3-\sqrt{2}^2\right)}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(D=\sqrt{\left(5-1\right)^2}+\sqrt{\left(\sqrt{5}-3\right)^2}\)
\(E=\left(3+\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right)\left(3-\dfrac{5+\sqrt{5}}{\sqrt{5}-1}\right)\)
\(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(G=\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\)
\(H=\dfrac{10}{\sqrt{3}-1}-\dfrac{55}{2\sqrt{3}+1}\)
help
Tính:
\(A=2\sqrt{\left(-3\right)^6}+2\sqrt{\left(-2\right)^4}-4\sqrt{\left(-2\right)^6}\)
\(B=\sqrt{\left(\sqrt{2}-2\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}\)
\(C=\sqrt{\left(3-\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(D=\sqrt{\left(5+\sqrt{6}\right)^2}-\sqrt{\left(\sqrt{6}-5\right)^2}\)
\(E=\sqrt{17^2-8^2}-\sqrt{3^2+4^2}\)
Tính
\(A=\sqrt{20}-3\sqrt{8}+5\sqrt{45}\)
\(B=\dfrac{30}{\sqrt{7}-1}+\dfrac{15}{\sqrt{7}+2}\)
\(C=\left(3-\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right)\left(3+\dfrac{5+\sqrt{5}}{\sqrt{5}+1}\right)\)
\(D=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(E=\sqrt{7-4\sqrt{3}}-\sqrt{3+2\sqrt{3}}\)
Tính:
\(A=\sqrt{20}-2\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
\(B=4\sqrt{\left(\sqrt{3}-1\right)^2}+2\sqrt{12}+4\sqrt{\dfrac{1}{2}}\)
\(C=\left(3+\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)\left(3-\dfrac{3+\sqrt{3}}{1+\sqrt{3}}\right)\)
\(D=\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}\)
Tính:
\(A=\left(\sqrt{72}-3\sqrt{24}+5\sqrt{8}\right)\sqrt{2}+4\sqrt{27}\)
\(B=\dfrac{1}{\sqrt{2}-1}+\dfrac{14}{3+\sqrt{2}}\)
\(C=\dfrac{5+3\sqrt{5}}{\sqrt{5}}+\dfrac{3\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\)
\(D=\sqrt{\left(1-\sqrt{2}\right)^2}-3\sqrt{18}+4\sqrt{\dfrac{1}{2}}\)
Bài 1:Thu gọn và tính:
a)A=\(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right)\left(\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\) với\(a^2=6-3\sqrt{3};b^2=2+\sqrt{3}\)
b)B=\(\dfrac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}+x+2}\)với\(x=1+\sqrt{5}\)
Bài 2: Tìm GTLN GTNN của \(C=\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}\)
Chứng minh các đẳng thức sau:
a) \(\left(1-a^2\right):\left(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\right)+1=\frac{2}{1-a}\)
b) \(\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)=\sqrt{b}-\sqrt{a}\)
c) \(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)=\frac{\sqrt{a}}{a}\)
Tính:
\(A=\sqrt{27}-2\sqrt{48}+3\sqrt{75}\)
\(B=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}-3\right)^2}\)
\(C=\sqrt{\left(2\sqrt{3}+1\right)^2}+\sqrt{\left(2\sqrt{3}-5\right)^2}\)
\(D=\sqrt{9-4\sqrt{5}}-\sqrt{14+6\sqrt{5}}\)
\(E=\dfrac{4}{\sqrt{5}-2}-\dfrac{32}{\sqrt{5}+1}\)
\(M=\dfrac{10}{3\sqrt{2}-4}+\dfrac{28}{3\sqrt{2}+2}\)
please help ;-;
Tính giá trị các biểu thức
A = \(\sqrt{\left(5-\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
B = \(\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
C = \(\sqrt{\left(3+\sqrt{7}\right)^2}-\sqrt{\left(2-\sqrt{7}\right)^2}\)
D = \(\sqrt{4-2\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
Tính:
\(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)
\(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)
\(C=10\sqrt{\dfrac{1}{5}}+\dfrac{1}{5}\sqrt{125}-2\sqrt{20}\)
\(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)