\(a,\left(2432515-315\right)+\left(51-126\right)-74\)
\(=2432200+\left(-75\right)-74\)
\(=2432125-74\)
\(=2432051\)
\(b,\dfrac{\left(12.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
\(=\dfrac{12^2.2^{16.2}}{11.2^{13}.\left(2^2\right)^{11}-\left(2^4\right)^9}\)
\(=\dfrac{3^2.2^4.2^{32}}{11.2^{13}.2^{22}-2^{36}}\)
\(=\dfrac{3^2.2^{4+32}}{11.2^{13+22}-2^{36}}\)
\(=\dfrac{3^2.2^{36}}{11.2^{35}-2^{36}}\)
\(=\dfrac{3^2.2}{11.1-2^{36}}\)
\(=\dfrac{18}{11-2^{36}}\)
a) (2432515 - 315 ) + (51 - 126) - 74
= 2432515 - 315 + 51 - 126 - 74
= ( 2432515 - 315 ) + 51 - ( 126 + 74 )
= 2432200 + 51 - 200
= 2432200 - 200 + 51
= 2432000 + 51 = 2432051
b, \(\dfrac{\left(12.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}=\dfrac{12^2.\left(2^{16}\right)^2}{11.2^{13}.\left(2^2\right)^{11}-\left(2^4\right)^9}\)=
\(\dfrac{\left(2.2.3\right)^2.2^{32}}{11.2^{13}.2^{22}-2^{36}}=\dfrac{2^2.2^{2.}.3^2.2^{32}}{11.2^{35}-2^{35}.2}\)= \(\dfrac{2^{36}.3^2}{2^{35}.\left(11-2\right)}=\dfrac{2^{35}.2.3^2}{2^{35}.9}=\dfrac{2.3^2}{9}=\dfrac{18}{9}=2\)