áp dụng công thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) vào bài là đc nhé
đẳng thức xảy ra khi \(A.B\ge0\)
tôi chỉ cho cần câu chứ ko bao h cho cá bạn nhé!
áp dụng công thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) vào bài là đc nhé
đẳng thức xảy ra khi \(A.B\ge0\)
tôi chỉ cho cần câu chứ ko bao h cho cá bạn nhé!
cho x,y,z là 2 số thực dương thỏa mãn \(2\sqrt{xy}+\sqrt{xz}=1\) Tính GTNN của biểu thức
P= \(\dfrac{3yz}{x}+\dfrac{4xz}{y}+\dfrac{5xy}{z}\)
Bài 1: Tìm GTNN của biểu thức A=\(\sqrt{x}+1\)
Bài 2: Tìm GTLN của biểu thức B=\(\dfrac{1}{\sqrt{x}+3}\)
1)Tìm GTNN của biểu thức
a)A=\(x^4+3x^2+2\)
B=(\(x^4+x^5\))
C=\(\left(x-1\right)^2+\left(y+2\right)^2\)
2)Tìm GTLN của biểu thức
A=5-3\(\left(2x-1\right)^2\)
B=\(\dfrac{1}{2\left(x-1\right)^2+3}\)
C=\(\dfrac{x^2+8}{x^2+2}\)
3)Tìm các giá trị nguyên của x để các biểu thức sau có GTLN
A=\(\dfrac{1}{7-x}\)
B=\(\dfrac{7-x}{12-x}\)
4)Tím số tự nhiên n để phân số \(\dfrac{7n-8}{2n-3}\) có GTLN
5)Tìm các giá trị nguyên của x để biểu thức sau có GTNN
A=\(\dfrac{1}{7-x}\)
B=\(\dfrac{7-x}{x-5}\)
C=\(\dfrac{5x-19}{x-4}\)
Help me mai 29/7 18h mik đi học rùi
Cho x, y là các số thực dương thỏa mãn x+y= 2019. Tìm GTNN của biểu thức P= \(\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{2019-y}}\)
Giúp mk vs nhé!
Tìm GTNN của biểu thức:
\(x^4-2x^2-3\left|x^2-1\right|-9\)
Cho 3 số x,y,z dương thỏa mãn :x+y+z=3.Tìm GTNN của biểu thức sau: P=xy+yz+zx+3/x+3/y+3/z
cho 3 số x,y,z dương thỏa mãn : x+y+z≤1. Tìm GTNN của biểu thức : P=x+y+z+2(\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\))
Bài 1 : Tìm GTNN dựa vào tính chất ( a + b)^2 = a^2 + 2ab+b^2
a, 4x^2 -4x -2
b, x^4 + 4x^2+1
c, 2x^2 -20x -7
Bài 2 : Tìm GTLN của các biểu thức : dựa vào tính chất ( a + b)^2 = a^2 + 2ab+b^2
a, 3/4 -3(x-2/5)^2
b,-x^2 + 4x+5
c, -9x^2-6x-2
d, -x^2 + 5x+1/2
e, -3x^2 -21x+2
Bài 1:Cho x, y, z >0 thỏa mãn x+y+z=12.Tìm GTLN của biểu thức
\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)
Bài 2:Cho a,b,c là số thực dương. Tìm GTNN của biểu thức
\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)