\(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\right)\)
\(B=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{x+2}\right):\dfrac{x^2-3x}{2x^2-x^3}\)
a) Rút gọn A & B
b) Tìm x để B > 0
c) Tính B khi \(\left|1-x\right|=0\)
Tính:
\(A=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{225\sqrt{224}+224\sqrt{225}}\)
Tính:
\(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(A=\left(\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{2-\sqrt{x}}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\right):\left(2-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn A
b) Cho |x| = 3. Tính A
Rút gọn : \(A=\left[\text{(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}).\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}}\right]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{xy^3}+\sqrt{x^3y}}\)
Rút gọn \(A=\left(\dfrac{6x+4}{3\sqrt{3x^3}-8}-\dfrac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\dfrac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
Tìm điều kiện xác định và rút gọn A
\(A=\left(\dfrac{4x\sqrt{x}+3x+9}{x+5\sqrt{x}+6}-\dfrac{3-\sqrt{x}}{2+\sqrt{x}}\right)\div\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}-\dfrac{3+4\sqrt{x}}{x+5\sqrt{x}+6}\right)\)
Rút gọn:
\(A=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)
a) Tính \(M=\sqrt{a^2+4ab^2+4b^4}-\sqrt{4a^2-12ab^2+9b^4}\)
Với \(a=\sqrt{2};b=1\)
b) Tính \(\dfrac{\sqrt{x}+\sqrt{3}}{3-x}.\left(\dfrac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\)