`=>2B=(2)/(25.27)+(2)/(27.29)+(2)/(29.31)+....+(2)/(73.75)`
`=>2B=(1)/(25)-(1)/(27)+(1)/(27)-(1)/(29)+(1)/(29)-(1)/(31)+.....+(1)/(73)-(1)/(75)`
`=>2B=(1)/(25)-(1)/(75)`
`=>2B=(3)/(75)-(1)/(75)=(2)/(75)`
`=>B=(2)/(75):2`
`=>B=1/75`
\(B=\dfrac{1}{25.27}+\dfrac{1}{27.29}+\dfrac{1}{29.31}+...+\dfrac{1}{73.75}\)
\(\Rightarrow2B=\dfrac{2}{25.27}+\dfrac{2}{27.29}+...+\dfrac{2}{73.75}=\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{29}+...+\dfrac{1}{73}-\dfrac{1}{75}\)\(\Rightarrow2B=\dfrac{1}{25}-\dfrac{1}{75}=\dfrac{2}{75}\Rightarrow B=\dfrac{1}{75}\)
Ta có: \(B=\dfrac{1}{25\cdot27}+\dfrac{1}{27\cdot29}+\dfrac{1}{29\cdot31}+...+\dfrac{1}{73\cdot75}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{25\cdot27}+\dfrac{2}{27\cdot29}+\dfrac{2}{29\cdot31}+...+\dfrac{2}{73\cdot75}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{29}+...+\dfrac{1}{73}-\dfrac{1}{75}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{25}-\dfrac{1}{75}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{75}=\dfrac{1}{75}\)