a) A=(x-3)^2 +9
Vì (x-3)^2 luôn > hoặc = 0 với mọi x
Nên A > hoặc = 0+9=9
Để A=9 thì (x-3)^2=0
=> x-3=0 <=> x=3
Vậy GTNN(A) =9<=>x=3
b) Ta có: \(B=\left(x-1\right)^2+\left(y+2\right)^2+10\ge10,\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy MIN B = 10 \(\Leftrightarrow x=-1;y=-2\)
c) Ta có: \(C=\left|x-1\right|+\left(2y-1\right)^4+1\ge1,\forall x,y\)
Dấu "=" xảy ra:\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy MIN C = 1 \(\Leftrightarrow x=1;y=\dfrac{1}{2}\)