Bài toán :
Cho góc a thỏa mãn tan(a) = \(\dfrac{-4}{3}\) và a thuộc khoảng \(\left(\dfrac{3}{2}\pi;2\pi\right)\) .
Tính P = \(tan\left(\dfrac{\alpha}{2}\right)+cos\left(\dfrac{\alpha}{2}\right)\)
Mình muốn giải cái này bằng cách sử dụng máy tính :3 .
Mình đã làm và ra đáp án nhưng nó bị sai dấu ấy ạ ! Mong các cao nhân có thể tìm ra lỗi sai cho mình :(( huhu
Đây là cách làm của mình :
1. Mình tìm góc a bằng cách bấm : shift tan(\(\dfrac{-4}{3}\)) tính được a
2. Ở góc phần tư thứ IV , nhận thấy tan âm , sin âm , cos dương . Mình xét tính sin(a/2) và cos(a/2) đều thỏa mãn về dấu và mình chỉ việc tính toán mà không cần loại điều kiện nữa )
\(sin\left(\dfrac{ans}{2}\right)+cos\left(\dfrac{ans}{2}\right)=\dfrac{\sqrt{5}}{5}\)
Khi check đáp án thì nó lại là âm ạ ! Mọi người cho em ít kinh nghiệm ạ !
Cảm ơn mọi người và chúc mọi người năm mới vui vẻ !
1. Cho \(2\cos\left(\alpha+\beta\right)=\cos\alpha\cos\left(\pi+\beta\right)\)
Tính \(A=\dfrac{1}{2\sin^2\alpha+3\cos^2\alpha}+\dfrac{1}{2\sin^2\beta+3\cos^2\beta}\)
2. Rút gọn: a) \(A=4\cos\dfrac{2x}{3}\cos\dfrac{\pi+2x}{3}\cos\dfrac{\pi-2x}{3}\)
b) \(B=\dfrac{\sin\left(a-b\right).\sin\left(a+b\right)}{\cos^2a.\sin^2b}-\tan^2a.\cot^2b\)
3. Chứng minh rằng: Nếu \(2\tan a=\tan\left(a+b\right)\) thì:
a) \(\sin b=\sin a.\cos\left(a+b\right)\)
b) \(3\sin b=\sin\left(2a+b\right)\)
Cho \(\cos\alpha=\dfrac{1}{3}\). Tính \(\sin\left(\alpha+\dfrac{\pi}{6}\right)-\cos\left(\alpha-\dfrac{2\pi}{3}\right)\) ?
a) cho sin\(\alpha\) = \(\frac{4}{5}\) (\(\frac{\pi}{2}\)<\(\alpha\) <\(\pi\)) . Tính sin2\(\alpha\) , cos2\(\alpha\) ; b) cho tan\(\alpha\) = 2 (\(\pi\)<\(\alpha\) <\(\frac{3\pi}{2}\)) . Tính sin2\(\alpha\) , cos2\(\alpha\) .
Tính giá trị của biểu thức sau:
\(A=cos\dfrac{\pi}{7}cos\dfrac{2\pi}{7}cos\dfrac{4\pi}{7}\)
Rút gọn cac biểu thức sau:
\(A=sin\left(\dfrac{5\pi}{2}-\alpha\right)+cos\left(13\pi+\alpha\right)-3sin\left(\alpha-5\pi\right)\)
\(B=sin\left(x+\dfrac{85\pi}{2}\right)+cos\left(2017\pi+x\right)+sin^2\left(33\pi+x\right)+sin^2\left(x-\dfrac{5\pi}{2}\right)+cos\left(x+\dfrac{3\pi}{2}\right)\)\(C=sin\left(x+\dfrac{2017\pi}{2}\right)+2sin^2\left(x-\pi\right)+cos\left(x+2019\pi\right)+cos2x+sin\left(x+\dfrac{9\pi}{2}\right)\)
Cho 0<α<π va α≠\(\dfrac{\pi}{2}\). Chung minh rang
\(\sqrt{1+cos\alpha}\) + \(\sqrt{1-cos\alpha}\) = 2sin\((\dfrac{\alpha}{2}+\dfrac{\pi}{4}\))
Tính :
a) \(\cos\left(\alpha+\dfrac{\pi}{3}\right)\), biết \(\sin\alpha=\dfrac{1}{\sqrt{3}}\) và \(0< \alpha< \dfrac{\pi}{2}\)
b) \(\tan\left(\alpha-\dfrac{\pi}{4}\right)\), biết \(\cos\alpha=-\dfrac{1}{3}\) và \(\dfrac{\pi}{2}< \alpha< \pi\)
c) \(\cos\left(a+b\right);\sin\left(a-b\right)\), biết
\(\sin a=\dfrac{4}{5};0^0< a< 90^0\) và \(\sin b=\dfrac{2}{3};90^0< b< 180^0\)
Tính giá trị của biểu thức sau:
\(A=cos\dfrac{\pi}{7}cos\dfrac{4\pi}{7}cos\dfrac{5\pi}{7}\)
\(B=sin60^0.sin42^0.sin66^0.sin78^0\)