\(\dfrac{2^{20}\cdot27^3+30\cdot4^9\cdot9^4}{6^9\cdot4^5+12^{10}}\\ =\dfrac{2^{20}\cdot\left(3^3\right)^3+\left(2\cdot3\cdot5\right)\cdot\left(2^2\right)^9\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^9\cdot\left(2^2\right)^5+\left(3\cdot4\right)^{10}}\\ =\dfrac{2^{20}\cdot3^9+2\cdot3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot3^9\cdot2^{10}+3^{10}\cdot4^{10}}\\ =\dfrac{2^{20}\cdot3^9+2^{19}\cdot3^9\cdot5}{2^{19}\cdot3^9+3^{10}\cdot2^{20}}\\ =\dfrac{2^{19}\cdot3^9\left(2+5\right)}{2^{19}\cdot3^9\left(1+2\cdot3\right)}\\ =\dfrac{2^{19}\cdot3^9\cdot7}{2^{19}\cdot3^9\cdot7}\\ =1\)