cho biểu thức
\(A=\left(\dfrac{x}{x^2-4}-\dfrac{4}{2-x}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)
a.rút gọn A
b.tìm giá trị nguyên của x để A nhận giá trị nguyên
helpp
Cho biểu thức: A=(x^2-9)/3.(x+5) và B=x/(x+3)+2x/(x-3)-(3x^2+9)/(x^3-9) với x khác -5, +3, -3. 1) Tính giá trị của biểu thức A khi x=2 2) Rút gọn biểu thức B 3) Cho P=A.B. Tìm giá trị ngyên của x để P có giá trị nguyên
Câu 1: (1,5 điểm) Phân tích các đa thức sau thành nhân tử:
a). x3 – 2x2 + x b) -2x2 – 7x + 9 c) –x2 + 6x + 6y + y2
Câu 2: (1,5 điểm). Cho biểu thức: A = (3x – x2) / (x3 – x2 – 6x)
a). Rút gọn biểu thức A.
b) Tìm giá trị nguyên của x để biểu thức A có giá trị là một số nguyên.
Câu 3: (2 điểm) Tìm x, biết:
a) x2 – 5x = 0
b) n3 + xn2 – 4 chia hết cho n2 + 4n + 4 với mọi n ≠ -2
c) (1- 2x)(1 + 2x) – x(x + 2)(x – 2) = 0
1) Cho a = x^2 - yz ; b = y^2 - xz ; c = z^2 - xy
C/m ax+ by + cz chia hết cho ( a+b+c)
2) Cho x , y thỏa mãn 5x^2 + 5y^2 + 5xy - 2x + 2y + 2 = 0
Tính A = (x+y)^25 + ( x-1)^24 + (9y-2)^23
3) Cho đa thức A = x^3 + 4x^2 + 3x - 7 và B = x+4
a) Tính A : B
b) Tìm x thuộc z để giá trị biểu thức A chia hết cho giá trị biểu thức B
4) Tìm x biết
a) (x-1)^3 - (x+3)(x^2-3x+9) + 3(x^2-4) = 2
b) ( x+2)(x^2-2x+4)-x(x^2+2)=0
c) x(x-2)+x-2=0
d) 5x(x-3) - x+3 = 0
e) 3x(x-5) - (x-1)(2+3x) = 30
f) (x+2)(x+30-(x-2)(x+5) = 0
Bài 1: Cho biểu thức A= (\(\dfrac{x}{x^2-4}\)+\(\dfrac{2}{2-x}\)+\(\dfrac{1}{x+2}\)) : (x-2 +\(\dfrac{10-x^2}{x+2}\))
a) Rút gọn biểu thức A.
b) Tính giá trị biểu thức A tại x , biết |x|=1/2
c) Tìm giá trị của x để A < 0.
Bài 2: Cho biểu thức : A= (\(\dfrac{3-x}{x+3}\). \(\dfrac{x^2+6x+9}{x^2-9}\)+\(\dfrac{x}{x+3}\)) :\(\dfrac{3x^2}{x+3}\)
a) Rút gọn biểu thức A.
b) Tính giá trị biểu thức A , với x = -1/2
c)Tìm giá trị của x để A < 0.
cho P=\(\left(\dfrac{x+2}{2x-4}+\dfrac{x-2}{2x+4}+\dfrac{-8}{x^2-4}\right):\dfrac{4}{x-2}\)
A) Tìm điều kiện của x để P xác định
B) Rút gọn biểu thức P
C) tính giá trị của biểu thức P khi x=\(-1\dfrac{1}{3}\)
Câu 1 :
Cho biểu thức \(P=\left(\dfrac{x^2}{x^2-3}+\dfrac{2x^2-24}{x^4-9}\right).\dfrac{7}{x^2+8}vớix\ne\pm\sqrt{3}\)
1.Rút gọn P
2.Tìm x để P nhận giá trị nguyên
Câu 2 :
1.Giải phương trình : \(\dfrac{1}{2x-2021}+\dfrac{1}{3x+2022}=\dfrac{1}{15x-2023}-\dfrac{1}{10x-2024}\)
2.Cho đa thức \(P\left(x\right)=2x^3-x^2+ax+bvàQ\left(x\right)=x^2-4x+4\).Tìm a,b để đa thức P(x) chia hết cho đa thức Q(x)
Câu 3:
1.Cho hai số thực x,y thỏa mãn \(0< xy\le1\) . Chứng minh \(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}\le\dfrac{2}{xy+1}\)
2.Cho \(S=a^3_1+a^3_2+a^3_3+...+a^3_{100}\) với \(a_1,a_2,a_3,...a_{100}\) là các số nguyên thỏa mãn \(a_1+a_2+a_3+...+a_{100}=2021^{2022}.CMR:S-1⋮6\)
Câu 3: Cho biểu thức:
M= \(\dfrac{x^2}{x^2+2x}+\dfrac{2}{x+2}+\dfrac{2}{x}\) (với \(x\ne0\) và \(x\ne2\))
a, Rút gọn biểu thức M
b, Tính giá trị của biểu thức M khi \(x=-\dfrac{3}{2}\)