Từ đề bài, ta có:
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2015}}\)
\(\Rightarrow2A-A=A=1-\dfrac{1}{2^{2016}}\)
Vậy \(A=1-\dfrac{1}{2^{2016}}\)
Đặt \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2015}}+\dfrac{1}{2^{2016}}\)
Ta có:
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2015}}+\dfrac{1}{2^{2016}}\)
\(\Rightarrow2A=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2015}}+\dfrac{1}{2^{2016}}\right)\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2015}}\)
\(\Rightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2015}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)
\(\Rightarrow A=1-\dfrac{1}{2^{2016}}\)
Vậy \(A=1-\dfrac{1}{2^{2016}}\)