A=\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2015}}+\dfrac{1}{2^{2016}}\)
2A=\(2.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2015}}+\dfrac{1}{2^{2016}}\right)\)
2A=\(\dfrac{2}{2}+\dfrac{2}{2^2}+\dfrac{2}{2^3}+...+\dfrac{2}{2^{2015}}+\dfrac{2}{2^{2016}}\)
2A=\(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2014}}+\dfrac{1}{2^{2015}}\)
2A-A=\(\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2014}}+\dfrac{1}{2^{2015}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2015}}+\dfrac{1}{2^{2016}}\right)\)
A= \(1-\dfrac{1}{2^{2016}}\)
A=\(\dfrac{2^{2016}-1}{2^{2016}}\)
Ta có:
A = \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{2015}}\)
\(\Rightarrow\) 2A = 2\(\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{2015}}\right)\)
\(\Rightarrow\) 2A = \(\dfrac{2}{2}+\dfrac{2}{2^2}+\dfrac{2}{2^3}+....+\dfrac{2}{2^{2015}}\)
\(\Rightarrow\) 2A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2014}}\)
\(\Rightarrow\) \(\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2014}}\right)\)- \(\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{2015}}\right)\)
= 2A - A
\(\Rightarrow\) A= 1 - \(\dfrac{1}{2^{2015}}\) = \(\dfrac{2^{2015}-1}{2^{2015}}\)
Vậy A = \(\dfrac{2^{2015}-1}{2^{2015}}\)