Gọi \(S=\dfrac{1}{10}+\dfrac{1}{40}+\dfrac{1}{88}+\dfrac{1}{154}+\dfrac{1}{238}+\dfrac{1}{340}\)
\(S=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+\dfrac{1}{14.17}+\dfrac{1}{17.20}\)
Nhân hai vế với 3 và áp dụng công thức tách một phân số thành hiệu hai phân số:
\(\dfrac{x}{n\left(n+x\right)}=\dfrac{1}{n}-\dfrac{1}{n+x}\)
\(\Rightarrow3S=3\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+\dfrac{1}{14.17}+\dfrac{1}{17.20}\right)\)
\(\Rightarrow3S=\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}\)
\(\Rightarrow3S=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}\)
\(\Rightarrow3S=\dfrac{1}{2}-\dfrac{1}{20}\)
\(\Rightarrow3S=\dfrac{10}{20}-\dfrac{1}{20}\)
\(\Rightarrow3S=\dfrac{9}{20}\)
\(\Rightarrow S=\dfrac{9}{20}:3\)
\(\Rightarrow S=\dfrac{9}{20}.\dfrac{1}{3}\)
\(\Rightarrow S=\dfrac{3}{20}\)