Bài tập cuối chương VII

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Tính đạo hàm của các hàm số sau:

a) \(y = 3{x^4} - 7{x^3} + 3{x^2} + 1\);

b) \(y = {\left( {{x^2} - x} \right)^3}\);

c) \(y = \frac{{4{\rm{x}} - 1}}{{2{\rm{x}} + 1}}\)

 
Thái Hưng Mai Thanh
20 tháng 8 2023 lúc 20:29

a, \(y=3x^4-7x^3+3x^2+1\)

\(y'=12x^3-21x^2+6x\)

b, \(y=\left(x^2-x\right)^3\)

\(y'=3\left(x^2-x\right)^2\left(2x-1\right)\)

c, \(y=\dfrac{4x-1}{2x+1}\)

\(y'=\dfrac{4+2}{\left(2x+1\right)^2}\)

\(y'=\dfrac{6}{\left(2x+1\right)^2}\)

Nguyễn Lê Phước Thịnh
20 tháng 8 2023 lúc 20:23

a: y=3x^4-7x^3+3x^2+1

=>y'=3*4x^3-7*3x^2+3*2x

=12x^3-21x^2+6x

b: \(y'=\left[\left(x^2-x\right)^3\right]'\)

\(=3\left(2x-1\right)\left(x^2-x\right)^2\)

c: \(y'=\dfrac{\left(4x-1\right)'\left(2x+1\right)-\left(4x-1\right)\left(2x+1\right)'}{\left(2x+1\right)^2}\)

\(=\dfrac{4\left(2x+1\right)-2\left(4x-1\right)}{\left(2x+1\right)^2}=\dfrac{6}{\left(2x+1\right)^2}\)


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết