a) = = -4.
b) = = (2-x) = 4.
c) =
= = = .
d) = = -2.
e) = 0 vì (x2 + 1) = x2( 1 + ) = +∞.
f) = = -∞, vì > 0 với ∀x>0.
a) = = -4.
b) = = (2-x) = 4.
c) =
= = = .
d) = = -2.
e) = 0 vì (x2 + 1) = x2( 1 + ) = +∞.
f) = = -∞, vì > 0 với ∀x>0.
\(u_n=\dfrac{n+1}{2^{n+1}}\left(\dfrac{2}{1}+\dfrac{2^2}{2}+\dfrac{2^3}{3}+...+\dfrac{2^n}{n}\right)\).
Chứng minh \(\left(u_n\right)\) có giới hạn và tìm giới hạn đó.
cho dãy số sau:
Hãy cho biết phần tử F(1395) có chữ số tận cùng là số mấy ?
Dùng định nghĩa tìm các giới hạn sau:
a) ;
b) .
Cho hàm số f: \(Z^+\rightarrow Z^+\) thỏa mãn đồng thời các điều kiện :
1) \(f\left(n+1\right)>f\left(n\right)\) với \(\forall n\in Z^+\)
2) \(f\left(f\left(n\right)\right)=n+2000\) với \(\forall n\in Z^+\)
a) Chứng minh: \(f\left(n+1\right)=f\left(n\right)+1\)
b) Tính \(f\left(n\right)\)
Cho hàm số f: \(Z^+\rightarrow Z^+\) thỏa mãn đồng thời các điều kiện :
1) \(f\left(n+1\right)>f\left(n\right)\) với \(\forall n\in Z\)
2) \(f\left(f\left(n\right)\right)=n+2000\) với \(\forall n\in Z\)
a) Chứng minh: \(f\left(n+1\right)=f\left(n\right)+1\)
b) Tính \(f\left(n\right)\)
Xét tính năng, giảm của các dãy số \(\left(u_n\right)\), biết :
a) \(u_n=\dfrac{1}{n}-2\)
b) \(u_n=\dfrac{n-1}{n+1}\)
c) \(u_n=\left(-1\right)^n\left(2^n+1\right)\)
d) \(u_n=\dfrac{2n+1}{5n+2}\)
Viết năm số hạng đầu và khảo sát tính năng, giảm của các dãy số \(\left(u_n\right)\), biết :
a) \(u_n=10^{1-2n}\)
b) \(u_n=3^n-7\)
c) \(u_n=\dfrac{2n+1}{n^2}\)
d) \(u_n=\dfrac{3^n\sqrt{n}}{2^n}\)
Ai giúp tôi với !
TRong các trường hợp sau , trường hợp nào cho ta ba số tự nhiên liên tiếp tăng dần ?
a) x, x+1 , x+2, trong đó x thuộc N;
b) b-1,b, b+1, trong đó b thuộc N*;
c) c, c+1, c+3 , trong đó c thuộc N;
d) m+1, m, m-1, trong đó m thuộc N* .
Biết thì sẵn giải thích gúp nha !