a) \(\sqrt{3+2\sqrt{2}}-\sqrt{17-12\sqrt{2}}\)
= \(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(3-2\sqrt{2}\right)^2}\)
= \(\left|\sqrt{2}+1\right|-\left|3-2\sqrt{2}\right|\)
= \(\sqrt{2}+1-3+2\sqrt{2}\)
= \(3\sqrt{2}-2\)
b) \(\sqrt{5-2\sqrt{6}}-\sqrt{14-4\sqrt{6}}-\sqrt{48}\)
= \(\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}-\sqrt{\left(2\sqrt{3}-\sqrt{2}\right)^2}-4\sqrt{3}\)
= \(\left|\sqrt{3}-\sqrt{2}\right|-\left|2\sqrt{3}-\sqrt{2}\right|-4\sqrt{3}\)
= \(\sqrt{3}-\sqrt{2}-2\sqrt{3}+\sqrt{2}-4\sqrt{3}\)
= \(-5\sqrt{3}\)
c) \(\sqrt{11+3\sqrt{8}}-\sqrt{17-12\sqrt{2}}-4\sqrt{8}\)
= \(\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-2\sqrt{2}\right)^2}-8\sqrt{2}\)
= \(\left|3+\sqrt{2}\right|-\left|3-2\sqrt{2}\right|-8\sqrt{2}\)
= \(3+\sqrt{2}-3+2\sqrt{2}-8\sqrt{2}\)
= \(-5\sqrt{2}\)