\(=\frac{-3\left(4\sqrt{3}+7\right)-3\left(4\sqrt{3}-7\right)}{\left(4\sqrt{3}\right)^2-49}+\sqrt{4-2\sqrt{3}}\)
Tiếp tục nhé
Ta có: \(\frac{-3}{4\sqrt{3}-7}-\frac{3}{4\sqrt{3}+7}+\sqrt{4-2\sqrt{3}}\)
\(=\frac{-3\left(4\sqrt{3}+7\right)-3\left(4\sqrt{3}-7\right)}{\left(4\sqrt{3}\right)^2-7^2}+\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)
\(=\frac{-12\sqrt{3}-21-12\sqrt{3}+21}{48-49}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\frac{-24\sqrt{3}}{-1}+\left|\sqrt{3}-1\right|\)
\(=24\sqrt{3}+\sqrt{3}-1\)(vì \(\sqrt{3}>1\))
\(=25\sqrt{3}-1\)