Chứng minh: \(\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}\sqrt[3]{-3+\sqrt{9+\dfrac{125}{27}}}\) là 1 số hữu tỉ
Bài 1
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{2x+1}{x^2+1}}\)
b. \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}\)
* Rút gọn biểu thức
a. \(\sqrt{20}+2\sqrt{45}+\sqrt{125}-3\sqrt{80}\)
b. \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
c. \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}+\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\)
Tính
\(a.\dfrac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)
\(b.\left(3-\sqrt{5}\right).\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right).\sqrt{3-\sqrt{5}}\)
\(c.\dfrac{a-\sqrt{b}}{\sqrt{b}}:\dfrac{\sqrt{b}}{a+\sqrt{b}}\left(b>0;a\ne-\sqrt{b}\right)\)
giải phương trình :
\(\sqrt{25x-125}-3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=6\)
Cho biểu thức:
\(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3};x\ge0,x\ne9\)
1) Rút gọn biểu thức P.
2) Tính giá trị của P trong các trường hợp sau:
a) \(x=\dfrac{9}{4}\)
b) \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
3) Tìm x để \(\dfrac{1}{P}>\dfrac{5}{4}\)
Rút gọn
a) \(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)
b) \(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
c) \(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)
d) \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
e) \(2\sqrt{\dfrac{16}{3}}-3\sqrt{\dfrac{1}{27}}-6\sqrt{\dfrac{4}{75}}\)
1.
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
* Giải phương trình
a. \(\sqrt{\left(x+1\right)^2}=3\)
b. \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)
Thực hiện phép tính:
a) \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right):\sqrt{3}\)
b) \(\left(\sqrt{125}+\sqrt{245}-\sqrt{5}\right):\sqrt{5}\)
c) \(\left(\sqrt{\dfrac{1}{7}}-\sqrt{\dfrac{16}{7}}+\sqrt{7}\right):\sqrt{7}\)
Thực hiện phép tính:
a/ \(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)
b/ \(\left(a.\sqrt{\dfrac{a}{b}}+2\sqrt{ab}+b\sqrt{\dfrac{b}{a}}\right)\sqrt{\dfrac{a}{b}}\)
c/ \(^3\sqrt{27}-^3\sqrt{-8}-^3\sqrt{125}\)
d/ \(3+\sqrt{18}+\sqrt{3}+\sqrt{8}\)
e/ \(^3\sqrt{\dfrac{135}{^{3\sqrt{5}}}}-^3\sqrt{54}.^3\sqrt{4}\)
f/ \(^3\sqrt{8a^3-5a}\)