\(B=1+5+5^2+5^3+...+5^{19}+5^{20}\)
\(\Rightarrow5B=5+5^2+5^3+5^4+...+5^{20}+5^{21}\)
\(\Rightarrow5B-B=\left(5+5^2+5^3+...+5^{20}+5^{21}\right)-\left(1+5+5^2+...+5^{19}+5^{20}\right)\)
\(\Rightarrow4B=5^{21}-1\Rightarrow B=\frac{5^{21}-1}{4}\)
B = 1 + 5 + 52 + 53 + ... + 519 + 520
5B = 5 + 52 + 53 + 54 + ... + 520 + 521
5B - B = (5 + 52 + 53 + 54 + ... + 520 + 521) - (1 + 5 + 52 + 53 + ... + 519 + 520)
4B = 521 - 1
B = \(\frac{5^{21}-1}{4}\)