\(\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{10^2}\right)\)
1.tính tổng
a. A=\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{20}\right)\)
b. B=\(\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right).....\left(1-\frac{2011}{2010}\right)\)
Bài 1: Tính a) \(\left(\frac{11}{12}:\frac{44}{16}\right)\cdot\left(\frac{-1}{3}+\frac{1}{2}\right)\) b) \(\frac{\left(-5^2\right)\cdot\left(-5\right)^3\cdot16}{5^4\cdot\left(-2\right)^4}\) c) \(7,5:\left(\frac{-5}{3}\right)+2\frac{1}{2}:\left(\frac{-5}{3}\right)\)d) \(\left(\frac{-1}{2}+\frac{1}{3}\right)\cdot\frac{4}{5}+\left(\frac{2}{3}+\frac{1}{2}\right):\frac{4}{5}\)
\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2020^2}\right)X\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)-\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)X\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)\)Làm nhanh và ngắn gọn nhất có thể nhé ! mình tik cho 10 tik
1 TÍNH
\(a,\left(\frac{-1}{4}\right)^0\)
\(b,\left(-2\frac{1}{3}\right)^2\)
\(c,\left(\frac{4}{5}\right)^{-2}\)
\(d,\left(0,5\right)^{-3}\)
\(e,\left(-1\frac{1}{3}\right)^4\)
\(f,27^3:3^2\)
\(g,\left(\frac{3}{5}\right)^{15}:\left(\frac{9}{25}\right)^5\)
\(h,5-\left(-\frac{5}{11}\right)^0+\left(\frac{1}{3}\right)^2:3\)
\(i,\left(\frac{1}{3}\right)^{-3}+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^2:\frac{1}{2}\right].8\)
\(C=\left(\frac{2}{3}-\frac{1}{4}+\frac{5}{11}\right):\left(\frac{5}{12}+1-\frac{7}{11}\right)\)
\(D=1\frac{1}{3}+\frac{1}{8}:\left(0,75-\frac{1}{2}\right)-\frac{25}{100}.\frac{1}{2}\)
\(E=\left(-\frac{1}{2}\right)^2-\left(-2\right)^2-5^0\)
Tính giá trị của :
D=\(\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\right)x\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)-\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)x\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}\right)\)
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{2}\left(1+2+3\right)+...+\frac{1}{2}\left(1+2+3+...+2000\right)\)
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2011}\left(1+2+3+...+2011\right)\)
\(\left(-\frac{1}{2}\right)+\left(-\frac{1}{9}\right)-\left(-\frac{3}{5}\right)+\frac{1}{2006}-\left(-\frac{2}{7}\right)\)