1 TÍNH
\(a,\left(\frac{-1}{4}\right)^0\)
\(b,\left(-2\frac{1}{3}\right)^2\)
\(c,\left(\frac{4}{5}\right)^{-2}\)
\(d,\left(0,5\right)^{-3}\)
\(e,\left(-1\frac{1}{3}\right)^4\)
\(f,27^3:3^2\)
\(g,\left(\frac{3}{5}\right)^{15}:\left(\frac{9}{25}\right)^5\)
\(h,5-\left(-\frac{5}{11}\right)^0+\left(\frac{1}{3}\right)^2:3\)
\(i,\left(\frac{1}{3}\right)^{-3}+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^2:\frac{1}{2}\right].8\)
a) \(\left(-\frac{1}{4}\right)^0=1\)
b) \(\left(-2\frac{1}{3}\right)^2=\left(-\frac{7}{3}\right)^2=\frac{49}{9}\)
c) \(\left(\frac{4}{5}\right)^{-2}=\frac{25}{16}\)
d) \(\left(0,5\right)^{-3}=8\)
e) \(\left(-1\frac{1}{3}\right)^4=\left(-\frac{4}{3}\right)^4=\frac{256}{81}\)
a, \(\left(\frac{-1}{4}\right)^0\) = 1
Bất kỳ số nguyên nào nếu có mũ bằng 0 đều bằng 1
b, \(\left(-2\frac{1}{3}\right)^2=\left(-\frac{7}{3}\right)^2=\frac{49}{9}\)