Áp dụng hằng đẳng thức \(\left(a-b\right)^3=a^3-b^3-3ab\left(a-b\right)\)
Ta có : \(A^3=\left(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\right)^3\)
\(=\sqrt{5}+2-\sqrt{5}+2-3\sqrt[3]{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\cdot A\)
\(=4-3\sqrt[3]{5-2^2}\cdot A\)
\(=4-3A\)
\(\Rightarrow A^3=4-3A\)
\(\Leftrightarrow A^3+3A-4=0\)
\(\Leftrightarrow A^3-A^2+A^2-A+4A-4=0\)
\(\Leftrightarrow A^2\left(A-1\right)+A\left(A-1\right)+4\left(A-1\right)=0\)
\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}A=1\\A^2+A+4=0\left(ptnv\right)\end{matrix}\right.\)
Vậy \(A=1\)