\(A=\dfrac{1}{2.1}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{9.10}\)
\(=\dfrac{1}{2}+2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right)\)
\(=\dfrac{1}{2}+2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=\dfrac{1}{2}+2\left(\dfrac{1}{2}-\dfrac{1}{10}\right)\)
\(=\dfrac{1}{2}+1-\dfrac{1}{5}\)
\(=\dfrac{1}{2}+\dfrac{4}{5}=\dfrac{13}{10}\)
Vậy \(A=\dfrac{13}{10}\)