\(3A=3.4.3+4.5.3+5.6.3+...+59.60.3\)
\(3A=3.4\left(5-2\right)+4.5\left(6-3\right)+5.6.\left(7-4\right)+...+59.60\left(61-58\right)\)
\(3A=3.4.5-2.3.4+4.5.6-3.4.5+...+59.60.61-58.59.60\)
\(3A=59.60.61-2.3.4\)
\(\Rightarrow A=59.20.61-2.4=...\)
\(3A=3.4.3+4.5.3+5.6.3+...+59.60.3\)
\(3A=3.4\left(5-2\right)+4.5\left(6-3\right)+5.6.\left(7-4\right)+...+59.60\left(61-58\right)\)
\(3A=3.4.5-2.3.4+4.5.6-3.4.5+...+59.60.61-58.59.60\)
\(3A=59.60.61-2.3.4\)
\(\Rightarrow A=59.20.61-2.4=...\)
1/3.4+1/4.5+1/5.6+...+1/20/21
\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{200.201}\)
Cho A = 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/99.100
B = 1/51.100 + 1/52.99 + ... + 1/99.52 + 1/100.51
Tính: A/B
Tính B
B=1/2.3 + 1/3.4 + 1/5.6 + ........ + 1/99.100
a) tìm n thuộc Z để phân số sau đây là số nguyên\(\dfrac{3}{n-2}\)
b)tìm số y nguyên dương biết:\(\dfrac{3}{y}< \dfrac{y}{7}< \dfrac{4}{y}\)
c)\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+.....+\dfrac{1}{29.30}\)
d)\(\left(1-\dfrac{1}{4}\right).\left(1-\dfrac{1}{5}\right).\left(1-\dfrac{1}{6}\right)......\left(1-\dfrac{1}{29}\right).\left(1-\dfrac{1}{30}\right)\)
Chứng tỏ rằng: \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}< \dfrac{1}{2}\)
Cho N =\(\dfrac{1.4}{2.3}+\dfrac{2.5}{3.4}+\dfrac{3.6}{4.5}+...+\dfrac{98.101}{99.100}\)Chứng minh 97<N<98
Tính E = \(\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+.....+\dfrac{1}{100}}{\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+....+\dfrac{1}{99.100}}\)
1.Tính
\(\dfrac{14.34-21.10}{28.10-28.16}\)
2.Rút gọn rôi quy đồng mẫu các phân số sau
\(\dfrac{4.5+4.11}{8.7+4.3}\) , \(\dfrac{-15.8+10.7}{5.6+20.3}\) và \(\dfrac{2^4.5^2.7}{2^3.5.7^2.11}\)
Các bn giúp mình ! Sắp phải nôp rồi !