\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Rightarrow\frac{5}{x}-\frac{2y}{6}=\frac{1}{6}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{6}-\frac{2y}{6}\)
\(\Rightarrow\frac{5}{x}=1-\frac{2y}{6}\)
\(\Rightarrow5.6=x\left(1+2y\right)\)
\(\Rightarrow30=x\left(1+2y\right)\)
\(\Rightarrow2y=2k\Rightarrow1+2y=2k+1\)
\(\Rightarrow1+2y=1;3;5;15;-1;-3;-5;-30\)
\(\Rightarrow x\in\left\{30;10;6;2;-30;-10;-6;-2\right\}\)
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Rightarrow\frac{5}{x}-\frac{2y}{6}=\frac{1}{6}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{6}-\frac{2y}{6}\)
\(\Rightarrow\frac{5}{x}=\frac{1-2y}{6}\)
\(\Rightarrow5.6\Rightarrow=x\left(1-2y\right)\)
\(\Rightarrow30=x\left(1-2y\right)\)
\(\Rightarrow x\in UC\left(30\right)\)
\(\Rightarrow x\in\left\{\pm1;\pm2;\pm3;\pm5;\pm6;\pm10;\pm15;\pm30\right\}\)
lập bẳng xét từng trường hợp x để tìm y
Ta có 5/x - y/3 = 1/6
<=> 1/6 + y/3 = 5/x
<=> 1 + 2y/6 = 5/x
=>x và 1 + 2y là Ư(30)
mà 1 + 2y là ước lẻ của 30 => 1+2y $e${1,3,5,15}
Ta có :
1+2y | 1 | 3 | 5 | 15 |
x | 30 | 10 | 6 | 2 |
=>
2y | 0 | 2 | 4 | 14 |
x | 30 | 10 | 6 | 2 |
=>
y | 0 | 1 | 2 | 7 |
x | 30 | 10 | 6 | 2 |