\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{x}< \frac{1}{2}\)
\(\Rightarrow x>2\left(1\right)\)
Giả sử x < y \(\Rightarrow\frac{1}{x}>\frac{1}{y}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{x}>\frac{1}{x}+\frac{1}{y}\)
\(\Rightarrow\frac{2}{x}>\frac{1}{2}=\frac{2}{4}\)
\(\Rightarrow x< 4\left(2\right)\)
Từ (1) và (2) => 2 < x < 4
Mà \(x\in Z\Rightarrow x=3\)
\(\Rightarrow\frac{1}{y}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\Rightarrow y=6\)
Vậy \(\left[\begin{array}{nghiempt}x=3\\y=6\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x=6\\y=3\end{array}\right.\)