b)Ta thấy: \(\begin{cases}\left|x-2016y\right|\ge0\\\left|x-2012\right|\ge0\end{cases}\)
\(\Rightarrow\left|x-2016y\right|+\left|x-2012\right|\ge0\)(1)
Mà \(\left|x-2016y\right|+\left|x-2012\right|\le0\)(2)
Từ (1) và (2) suy ra \(\left|x-2016y\right|+\left|x-2012\right|=0\)
\(\Rightarrow\begin{cases}\left|x-2012\right|=0\\\left|x-2016y\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x-2012=0\left(1\right)\\x-2016y=0\left(2\right)\end{cases}\)
\(\left(1\right)\Rightarrow x=2012\).Thay vào (2) ta có:
\(2012-2016y=0\)\(\Rightarrow2016y=2012\)\(\Rightarrow y=\frac{503}{504}\)(loại vì \(x,y\in Z\))
Vậy không tồn tại giá trị nào thỏa mãn