\(\dfrac{1}{\sqrt{x}}\)\(+\)\(\dfrac{1}{\sqrt{y}}\)\(+\)\(\sqrt{x}\)\(+\)\(\sqrt{y}\)\(=4\)
\(\Leftrightarrow\)\(\dfrac{1}{\sqrt{x}}\)\(-1\)\(\dfrac{1}{\sqrt{y}}\)-1+\(\sqrt{x}\)-1\(\sqrt{y}\)-1=0
\(\Leftrightarrow\)\(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\sqrt{x}-1+\dfrac{\sqrt{y}-1}{\sqrt{y}}+\sqrt{y}-1\)=0
\(\Leftrightarrow\)\(\left(\sqrt{x}-1\right)\left(\dfrac{1}{\sqrt{x}}+1\right)\)\(+\left(\sqrt{y}-1\right)\left(\dfrac{1}{\sqrt{y}}+1\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{y}=1\\\sqrt{x}=1\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
Vậy