\(4x+\left|x-2\right|-15\left(x+2\right)=0\)
\(\Rightarrow4x+\left|x-2\right|-15x-30=0\)
\(\Rightarrow-11x+\left|x-2\right|=30\)
\(\Rightarrow\left[{}\begin{matrix}-11x+x-2=30\left(đk:x\ge2\right)\\-11x-x+2=30\left(đk:x< 2\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{32}{-11}\left(ktm\right)\\x=\dfrac{-14}{6}\left(tm\right)\end{matrix}\right.\)
\(\left|2x-10\right|+\left|3y-4\right|=0\)
\(\left\{{}\begin{matrix}\left|2x-10\right|\ge0\\\left|3y-4\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|2x-10\right|+\left|3y-4\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|2x-10\right|=0\Rightarrow2x=10\Rightarrow x=5\\\left|3y-4\right|=0\Rightarrow3y=4\Rightarrow y=\dfrac{4}{3}\end{matrix}\right.\)