Với x >= 2/3 thì"
\(\left|x-\frac{2}{3}\right|=2\Leftrightarrow x-\frac{2}{3}=2\Leftrightarrow x=\frac{8}{3}\left(TM\right)\)
Với x < 2/3 thì:
\(\left|x-\frac{2}{3}\right|=2\Leftrightarrow\frac{2}{3}-x=2\Leftrightarrow x=-\frac{4}{3}\left(TM\right)\)
Vậy..
|x - \(\frac{2}{3}\)| = 2
Th1:
x - \(\frac{2}{3}\) = 2
=> x = \(\frac{8}{3}\)
Th2:
x - \(\frac{2}{3}\) = -2
=> x = - \(\frac{4}{3}\)
Tìm \(x\) :
\(\left|x-\frac{2}{3}\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{2}{3}=2\\x-\frac{2}{3}=-2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2+\frac{2}{3}\\x=2+\frac{2}{3}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\frac{6}{3}+\frac{2}{3}=\frac{8}{3}\\x=\frac{-6}{3}+\frac{2}{3}=\frac{-4}{3}\end{matrix}\right.\)
Vậy \(x\)=\(\frac{8}{3}\) hoặc \(x=\frac{-4}{3}\)
Nhớ tick cho mk nhé bạn
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{2}{3}=2\\x-\frac{2}{3}=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2+\frac{2}{3}\\x=-2+\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}\\x=-\frac{4}{3}\end{matrix}\right.\)
| x - 2/3 | = 2
TH 1 : \(x-\frac{2}{3}=2\)
\(x=2+\frac{2}{3}\)
\(x=\frac{8}{3}\)
TH 2 : \(x-\frac{2}{3}=-2\)
\(x=-2+\frac{2}{3}\)
\(x=\frac{-4}{3}\)
Vậy x ∈ \(\left\{\frac{8}{3};\frac{-4}{3}\right\}\)
|x-\(\frac{2}{3}\)|=2
<=>\(\left[{}\begin{matrix}x-\frac{2}{3}=2\\x-\frac{2}{3}=-2\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=\frac{8}{3}\\x=\frac{-4}{3}\end{matrix}\right.\)