b) Ta có: 2x-10 \(⋮x+1\)
=> \(2x-10-2\left(x+1\right)⋮x+1\)
<=> \(-12⋮x+1\)(1)
Vì x thuộc Z => x+1 thuộc Z(2)
Từ (1)(2)=> x+1\(\inƯ_{\left(-12\right)}=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Sau đó sẽ tìm ra x. Đến đây bạn tự làm nốt.
Để 10 chia hết x + 3 thì
x + 3 thuộc Ư(10) = { -10 ; -5 ; -2 ; --1 ; 1 ; 2 ; 5 ; 10 }
=> x thuộc { -13 ; -8 ; -5 ; -4 ; -2 ; -1 ; 2 ; 7 }
b) Ta có:
2x - 10 = 2x + 2 - 12
= 2( x + 1) - 12
Vì 2(x +1) chia hết cho x +1 nên => 12 cũng chia hết cho x + 1
=> x + 1 thuộc Ư(12) = { -1 ; -2 ; -3 ; -4 ; -6 ; -12 ; 1 ; 2 ; 3 ; 4 ; 6 ; 12 }
=> x thuộc { 0 ; -3 ; -4 ; -5 ; -7 ; -13 ; -2 ; 1 ; 2 ; 3 ; 5; 11 }