|2x - 1|.\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{1996.1997}\right)\)= 1996
|2x - 1|.\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1996}-\dfrac{1}{1997}\right)\)= 1996
|2x - 1|.\(\left(1-\dfrac{1}{1997}\right)\)= 1996
|2x - 1|. \(\dfrac{1996}{1997}\)= 1996
| = 1996 : \(\dfrac{1996}{1997}\)
|2x - 1| = 1996 . \(\dfrac{1997}{1996}\)
|2x - 1| = 1997
2x - 1 = ± 1997
TH1:
2x -1 = 1997
2x = 1997 +1
2x= 1998
x= 1998:2
x=999
TH2:
2x-1= -1997
2x= -1997+1
2x= -1996
x= -1996:2
x= -998
Vậy x ∈ {999; -998}