a) \(0,5\cdot\left(x-\dfrac{1}{3}\right)-\dfrac{1}{2}=x+\left(-\dfrac{4}{5}\right)\)
\(\Rightarrow\dfrac{1}{2}\cdot\left(x-\dfrac{1}{3}\right)-\dfrac{1}{2}=x-\dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{1}{2}x-\dfrac{1}{6}-\dfrac{1}{2}=x-\dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{1}{2}x-\dfrac{2}{3}=x-\dfrac{4}{5}\)
\(\Leftrightarrow15x-20=30x-24\)
\(\Leftrightarrow15x-30x=-24+20\)
\(\Leftrightarrow-15x=-4\)
\(\Rightarrow x=\dfrac{4}{15}\)
Vậy \(x=\dfrac{4}{15}\)
b) \(\dfrac{2}{3}\cdot\left(\dfrac{1}{2}x-\dfrac{1}{3}\right)+\dfrac{1}{2}=\dfrac{2}{3}-x\)
\(\Rightarrow\dfrac{1}{3}x-\dfrac{2}{9}+\dfrac{1}{2}=\dfrac{2}{3}-x\)
\(\Leftrightarrow\dfrac{1}{3}x+\dfrac{5}{18}=\dfrac{2}{3}-x\)
\(\Leftrightarrow6x+5=12-18x\)
\(\Leftrightarrow6x+18x=12-5\)
\(\Leftrightarrow24x=7\)
\(\Rightarrow x=\dfrac{7}{24}\)
Vậy \(x=\dfrac{7}{24}\)
\(a,0,5\cdot\left(x-\dfrac{1}{3}\right)-\dfrac{1}{2}=x+\dfrac{-4}{5}\\ \dfrac{1}{2}\cdot\left(x-\dfrac{1}{3}\right)-\dfrac{1}{2}=x+\dfrac{-4}{5}\\ \dfrac{1}{2}x-\dfrac{1}{6}-\dfrac{1}{2}=x+\dfrac{-4}{5}\\ \dfrac{1}{2}x-x=\dfrac{-4}{5}+\dfrac{1}{6}+\dfrac{1}{2}\\ x\left(\dfrac{1}{2}-1\right)=\dfrac{-24}{30}+\dfrac{5}{30}+\dfrac{15}{30}\\ \dfrac{-1}{2}x=\dfrac{-2}{15}\\ x=\dfrac{-2}{15}:\dfrac{-1}{2}\\ x=\dfrac{-2}{15}\cdot\left(-2\right)\\ x=\dfrac{4}{15}\)
\(b,\dfrac{2}{3}\cdot\left(\dfrac{1}{2}\cdot x-\dfrac{1}{3}\right)+\dfrac{1}{2}=\dfrac{2}{3}-x\\ \dfrac{1}{3}x-\dfrac{2}{9}+\dfrac{1}{2}=\dfrac{2}{3}-x\\ \dfrac{1}{3}x+x=\dfrac{2}{3}+\dfrac{2}{9}-\dfrac{1}{2}\\ x\left(\dfrac{1}{3}+1\right)=\dfrac{12}{18}+\dfrac{4}{18}-\dfrac{9}{18}\\ \dfrac{4}{3}x=\dfrac{7}{18}\\ x=\dfrac{7}{18}:\dfrac{4}{3}\\ x=\dfrac{7}{18}\cdot\dfrac{3}{4}\\ x=\dfrac{7}{24}\)