x2 - 10x = -25
<=>x2-10x+25=0
<=>(x-5)2=0
<=>x-5=0
<=>x=5
Vậy x=5
x2 - 10x = -25
<=>x2-10x+25=0
<=>(x-5)2=0
<=>x-5=0
<=>x=5
Vậy x=5
Bài 1: Phân tích các đa thức sau thành nhân tử
a. 1 - 4x2
b. 8 - 27x3
c. 27 + 27x + 9x 2 + x3
d. 2x3 + 4x2 + 2x
e. x2 - 5x - y2 + 5y
f. x2 - 6x + 9 - y2
g. 10x (x - y) - 6y(y - x)
h. x2 - 4x - 5
i. x4 - y4
Bài 2: Tìm x, biết
a. 5(x - 2) = x - 2
b. 3(x - 5) = 5 - x
c. (x +2)2 - (x+ 2) (x - 2) = 0
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a. A = x2 - 6x + 11
b. B = 4x2 - 20x + 101
c. C = -x2 - 4xy + 5y2 + 10x - 22y + 28
Bài 2: Giải các phương trình sau:
a) \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) b) (x2 – 25) + (x – 5)(2x – 11) = 0
c) (x2 – 6x + 9) – 4 = 0 d) \(\frac{x+3}{x+1}+\frac{x-5}{x}=2\)
A=x2-25/x3-10x2+25:y-2/y2-y-2 biết x2+9y2+4xy=2xy-xy-|x-3|
Tìm x biết:
1) x2 - 10x + 25 = 0
2) 4x2 - 9 = 0
4. Cho A = \(\left(\frac{x^2-25}{x^{3^{ }}-10x^2+25}\right):\left(\frac{y-2}{y^2-y-2}\right)\)
Tính giá trị M biết: x2 + 9y2 - 4xy = 2xy - \(\left|x-3\right|\)
1. Cho A = \(\left(\frac{x^2-25}{x^3-10x^2+25}\right):\left(\frac{y-2}{y^2-y-2}\right)\)
Tính giá trị M biết: x2 + 9y2 - 4xy = 2xy - \(\left|x-3\right|\)
tìm x biết:
1) x2 - 10x = -25
2) 5x (x-1) = x-1
3) 2 (x+5) - x2 - 5x = 0
4) x2 - 2x -3 = 0
5) 2x2 + 5x - 3 = 0
1. Bài 1: Phân tích các đa thức thành nhân tử.
a) 5x( x-1) – 3x(x-1)
b) 9x2 + 6xy + y2
c) (x + y)2 – (x - y)2
d) x6 – y6
2. Bài 2: Tính nhanh.
a) 85.12,7 + 5,3.12,7 b) 52.143 – 52.39 – 8.26
b) 252 – 152 d) 872 + 732 – 272 – 132
3. Bài 3: Tính giá trị của biểu thức:
a) x2 + xy + x tại x = 77 và y = 22
b) x( x – y) + y(y – x) tại x = 53 và y = 3
c) x2 – 2xy – 4z2 tại x = 6 và y = -4 và z = 45
d) 3(x – 3)(x + 7) + (x – 4)2 + 48 tại x = 0,5
4. Bài 4: Tìm x biết.
a) x3 - 0,25x = 0 b) x3 - 10x = - 25
c) x2 - 2x – 3 = 0 d) 2x2 + 5x – 3 = 0
5. Bài 5: Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức sau.
a) x2 + 3x + 7
b) 11 – 10x – x2
6. Bài 6: Cho a + b +c = 0 và a2 + b2 +c2 = 1. Tính giá trị của biểu thức M = a4 + b4 +c4
Giải phương trình:
x2−8x+6= -1
\(x^2+10x-11=0\)