a; [\(\dfrac{2}{3}\) - \(x\)]: \(\dfrac{3}{4}\) = \(\dfrac{1}{5}\)
\(\dfrac{2}{3}\) - \(x\) = \(\dfrac{1}{5}\) \(\times\) \(\dfrac{3}{4}\)
\(\dfrac{2}{3}\) - \(x\) = \(\dfrac{3}{20}\)
\(x\) = \(\dfrac{2}{3}\) - \(\dfrac{3}{20}\)
\(x\) = \(\dfrac{31}{60}\)
b; \(\dfrac{1}{3}\) + \(\dfrac{2}{3}\): \(x\) = -7
\(\dfrac{2}{3}\) : \(x\) = -7 - \(\dfrac{1}{3}\)
\(\dfrac{2}{3}\) : \(x\) = - \(\dfrac{22}{3}\)
\(x\) = \(\dfrac{2}{3}\) : (- \(\dfrac{22}{3}\))
\(x\) = - \(\dfrac{1}{11}\)
c;
(-2\(x\) + \(\dfrac{3}{5}\))2 - \(\dfrac{9}{25}\) = 0
(\(\dfrac{3}{5}\) - 2\(x\))2 = \(\dfrac{9}{25}\)
\(\left[{}\begin{matrix}\dfrac{3}{5}-2x=\dfrac{-3}{5}\\\dfrac{3}{5}-2x=\dfrac{3}{5}\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=\dfrac{3}{5}+\dfrac{3}{5}\\2x=\dfrac{3}{5}-\dfrac{3}{5}\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=\dfrac{6}{5}\\2x=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{6}{5}:2\\x=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=0\end{matrix}\right.\)
Vậy \(x\) \(\in\) {0; \(\dfrac{3}{5}\)}