a) \(11-\left(\left|x\right|-7\right)=-21\)
=> \(\left|x\right|-7=11-\left(-21\right)\)
=> \(\left|x\right|-7=32\)
=> \(\left|x\right|=32+7\)
=> \(\left|x\right|=49\)
=> \(\left[{}\begin{matrix}x=49\\x=-49\end{matrix}\right.\)
Vậy \(x=\left[{}\begin{matrix}49\\-49\end{matrix}\right.\)
b) \(-5+\left(\left|x\right|+13\right)=\left|-4\right|\)
=> \(-5+\left(\left|x\right|+13\right)=4\)
=> \(\left|x\right|+13=4-\left(-5\right)\)
=> \(\left|x\right|+13=9\)
=> \(\left|x\right|=9-13\)
=> \(\left|x\right|=-4\)
mà \(\left|x\right|\le x\)
=> \(x=\varnothing\)
Vậy \(x=\varnothing\)
c) \(\left|x\right|-300=-190\)
=> \(\left|x\right|=-190+300\)
=> \(\left|x\right|=110\)
=> \(\left[{}\begin{matrix}x=100\\x=-100\end{matrix}\right.\)
Vậy \(x=\left[{}\begin{matrix}100\\-100\end{matrix}\right.\)
d) \(-261+\left|x\right|=315\)
=> \(\left|x\right|=315-\left(-261\right)\)
=> \(\left|x\right|=576\)
=> \(\left[{}\begin{matrix}x=576\\x=-576\end{matrix}\right.\)
Vậy \(x=\left[{}\begin{matrix}576\\-576\end{matrix}\right.\)